Multi-label methods for prediction with sequential data
نویسندگان
چکیده
The number of methods available for classification of multi-label data has increased rapidly over recent years, yet relatively few links have been made with the related task of classification of sequential data. If labels indices are considered as time indices, the problems can often be seen as equivalent. In this paper we detect and elaborate on connections between multi-label methods and Markovian models, and study the suitability of multi-label methods for prediction in sequential data. From this study we draw upon the most suitable techniques from the area and develop two novel competitive approaches which can be applied to either kind of data. We carry out an empirical evaluation investigating performance on real-world sequential-prediction tasks: electricity demand, and route prediction. As well as showing that several popular multi-label algorithms are in fact easily applicable to sequencing tasks, our novel approaches, which benefit from a unified view of these areas, prove very competitive against established methods.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملSaliency-based Sequential Image Attention with Multiset Prediction
Humans process visual scenes selectively and sequentially using attention. Central to models of human visual attention is the saliency map. We propose a hierarchical visual architecture that operates on a saliency map and uses a novel attention mechanism to sequentially focus on salient regions and take additional glimpses within those regions. The architecture is motivated by human visual atte...
متن کاملUsing Entropy as a Measure of Acceptance for Multi-label Classification
Multi-label classifiers allow us to predict the state of a set of responses using a single model. A multi-label model is able to make use of the correlation between the labels to potentially increase the accuracy of its prediction. Critical applications of multi-label classifiers (such as medical diagnoses) require that the system’s confidence in prediction also be provided with the multi-label...
متن کاملAn Efficient Large-scale Semi-supervised Multi-label Classifier Capable of Handling Missing labels
Multi-label classification has received considerable interest in recent years. Multi-label classifiers have to address many problems including: handling large-scale datasets with many instances and a large set of labels, compensating missing label assignments in the training set, considering correlations between labels, as well as exploiting unlabeled data to improve prediction performance. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 63 شماره
صفحات -
تاریخ انتشار 2017